{ "id": "2205.02025", "version": "v1", "published": "2022-05-04T12:32:07.000Z", "updated": "2022-05-04T12:32:07.000Z", "title": "Gibbs measures for HC-model with a countable set of spin values on a Cayley tree", "authors": [ "R. M. Khakimov", "M. T. Makhammadaliev", "U. A. Rozikov" ], "comment": "15 pages, 1 figure", "categories": [ "math-ph", "math.MP" ], "abstract": "In this paper, we study the HC-model with a countable set $\\mathbb Z$ of spin values on a Cayley tree of order $k\\geq 2$. This model is defined by a countable set of parameters (that is, the activity function $\\lambda_i>0$, $i\\in \\mathbb Z$). A functional equation is obtained that provides the consistency condition for finite-dimensional Gibbs distributions. Analyzing this equation, the following results are obtained: - Let $\\Lambda=\\sum_i\\lambda_i$. For $\\Lambda=+\\infty$ there are no translation-invariant Gibbs measures (TIGM) and no two-periodic Gibbs measures (TPGM); - For $\\Lambda<+\\infty$, the uniqueness of TIGM is proved; - Let $\\Lambda_{\\rm cr}(k)=\\frac{k^k}{(k-1)^{k+1}}$. If $0<\\Lambda\\leq\\Lambda_{\\rm cr}$, then there is exactly one TPGM that is TIGM; - For $\\Lambda>\\Lambda_{\\rm cr}$, there are exactly three TPGMs, one of which is TIGM.", "revisions": [ { "version": "v1", "updated": "2022-05-04T12:32:07.000Z" } ], "analyses": { "subjects": [ "82B26", "60K35" ], "keywords": [ "countable set", "cayley tree", "spin values", "two-periodic gibbs measures", "translation-invariant gibbs measures" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }