{ "id": "2204.11968", "version": "v1", "published": "2022-04-25T21:15:02.000Z", "updated": "2022-04-25T21:15:02.000Z", "title": "Some remarks on critical sets of Laplace eigenfunctions", "authors": [ "Chris Judge", "Sugata Mondal" ], "comment": "11 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "We study the set of critical points of a solution to $\\Delta u = \\lambda \\cdot u$ and in particular components of the critical set that have codimension 1. We show, for example, that if a second Neumann eigenfunction of a simply connected polygon $P$ has infinitely many critical points, then $P$ is a rectangle.", "revisions": [ { "version": "v1", "updated": "2022-04-25T21:15:02.000Z" } ], "analyses": { "subjects": [ "58J05" ], "keywords": [ "critical set", "laplace eigenfunctions", "critical points", "second neumann eigenfunction", "components" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }