{ "id": "2204.10808", "version": "v1", "published": "2022-04-21T01:28:37.000Z", "updated": "2022-04-21T01:28:37.000Z", "title": "Spinors in $\\mathbb{K}$-Hilbert Spaces", "authors": [ "V. V. Varlamov" ], "comment": "29 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a structure of the $\\mathbb{K}$-Hilbert space, where $\\mathbb{K}\\simeq\\mathbb{R}$ is a field of real numbers, $\\mathbb{K}\\simeq\\mathbb{C}$ is a field of complex numbers, $\\mathbb{K}\\simeq\\mathbb{H}$ is a quaternion algebra, within the framework of division rings of Clifford algebras. The $\\mathbb{K}$-Hilbert space is generated by the Gelfand-Naimark-Segal construction, while the generating $C^\\ast$-algebra consists of the energy operator $H$ and the generators of the group $SU(2,2)$ attached to $H$. The cyclic vectors of the $\\mathbb{K}$-Hilbert space corresponding to the tensor products of quaternionic algebras define the pure separable states of the operator algebra. Depending on the division ring $\\mathbb{K}$, all states of the operator algebra are divided into three classes: 1) charged states with $\\mathbb{K}\\simeq\\mathbb{C}$; 2) neutral states with $\\mathbb{K}\\simeq\\mathbb{H}$; 3) truly neutral states with $\\mathbb{K}\\simeq\\mathbb{R}$. For pure separable states that define the fermionic and bosonic states of the energy spectrum, the fusion, doubling (complexification) and annihilation operations are determined.", "revisions": [ { "version": "v1", "updated": "2022-04-21T01:28:37.000Z" } ], "analyses": { "keywords": [ "hilbert space", "pure separable states", "operator algebra", "neutral states", "quaternionic algebras define" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }