{ "id": "2204.10204", "version": "v1", "published": "2022-04-21T15:40:24.000Z", "updated": "2022-04-21T15:40:24.000Z", "title": "On the number of squares in a finite word", "authors": [ "Srečko Brlek", "Shuo Li" ], "categories": [ "math.CO" ], "abstract": "A {\\em square} is a word of the form $uu$. In this paper we prove that for a given finite word $w$, the number of distinct square factors of $w$ is bounded by $|w|-|\\Alphabet(w)|+1$, where $|w|$ denotes the length of $w$ and $|\\Alphabet(w)|$ denotes the number of distinct letters in $w$. This result answers a conjecture of Fraenkel and Simpson stated in 1998.", "revisions": [ { "version": "v1", "updated": "2022-04-21T15:40:24.000Z" } ], "analyses": { "subjects": [ "68R15", "68R10" ], "keywords": [ "finite word", "distinct square factors", "distinct letters", "result answers", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }