{ "id": "2204.10118", "version": "v1", "published": "2022-04-21T14:14:09.000Z", "updated": "2022-04-21T14:14:09.000Z", "title": "Regular Functions on the K-Nilpotent Cone", "authors": [ "Lucas Mason-Brown" ], "comment": "comments welcome!", "categories": [ "math.RT" ], "abstract": "Let $G$ be a complex reductive algebraic group with Lie algebra $\\mathfrak{g}$ and let $G_{\\mathbb{R}}$ be a real form of $G$ with maximal compact subgroup $K_{\\mathbb{R}}$. Associated to $G_{\\mathbb{R}}$ is a $K \\times \\mathbb{C}^{\\times}$-invariant subvariety $\\mathcal{N}_{\\theta}$ of the (usual) nilpotent cone $\\mathcal{N} \\subset \\mathfrak{g}^*$. In this article, we will derive a formula for the ring of regular functions $\\mathbb{C}[\\mathcal{N}_{\\theta}]$ as a representation of $K \\times \\mathbb{C}^{\\times}$. Some motivation comes from Hodge theory. In arXiv:1206.5547, Schmid and Vilonen use ideas from Saito's theory of mixed Hodge modules to define canonical good filtrations on many Harish-Chandra modules (including all standard and irreducible Harish-Chandra modules). Using these filtrations, they formulate a conjectural description of the unitary dual. If $G_{\\mathbb{R}}$ is split, and $X$ is the spherical principal series representation of infinitesimal character $0$, then conjecturally $\\mathrm{gr}(X) \\simeq \\mathbb{C}[\\mathcal{N}_{\\theta}]$ as representations of $K \\times \\mathbb{C}^{\\times}$. So a formula for $\\mathbb{C}[\\mathcal{N}_{\\theta}]$ is an essential ingredient for computing Hodge filtrations.", "revisions": [ { "version": "v1", "updated": "2022-04-21T14:14:09.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "regular functions", "k-nilpotent cone", "harish-chandra modules", "complex reductive algebraic group", "maximal compact subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }