{ "id": "2204.08455", "version": "v1", "published": "2022-04-18T17:59:19.000Z", "updated": "2022-04-18T17:59:19.000Z", "title": "On perfect powers that are sum of two balancing numbers", "authors": [ "Pritam Kumar Bhoi", "Sudhansu Sekhar Rout", "Gopal Krishna Panda" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $B_k$ denote the $k^{th}$ term of balancing sequence. In this paper we find all positive integer solutions of the Diophantine equation $B_n+B_m = x^q$ in variables $(m, n,x,q)$ under the assumption $n\\equiv m \\pmod 2$. Furthermore, we study the Diophantine equation \\[B_n^{3}\\pm B_m^{3} = x^q\\] with positive integer $q\\geq 3$ and $\\gcd(B_n, B_m) =1$.", "revisions": [ { "version": "v1", "updated": "2022-04-18T17:59:19.000Z" } ], "analyses": { "subjects": [ "11B37" ], "keywords": [ "perfect powers", "balancing numbers", "diophantine equation", "positive integer solutions", "balancing sequence" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }