{ "id": "2204.08061", "version": "v1", "published": "2022-04-17T18:07:32.000Z", "updated": "2022-04-17T18:07:32.000Z", "title": "Positive solutions of quasilinear elliptic equations with Fuchsian potentials in Wolff class", "authors": [ "Ratan Kr. Giri", "Yehuda Pinchover" ], "comment": "40 pages", "categories": [ "math.AP" ], "abstract": "Using Harnack's inequality and a scaling argument we study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point $\\zeta \\in \\partial\\Omega\\cup\\{\\infty\\}$ for the quasilinear elliptic equation $$-\\text{div}(|\\nabla u|_A^{p-2}A\\nabla u)+V|u|^{p-2}u =0\\quad\\text{ in } \\Omega,$$ where $\\Omega$ is a domain in $\\mathbb{R}^d$, $d\\geq 2$, $1