{ "id": "2204.07759", "version": "v1", "published": "2022-04-16T09:12:38.000Z", "updated": "2022-04-16T09:12:38.000Z", "title": "Ideal class groups of number fields and Bloch-Kato's Tate-Shafarevich groups for symmetric powers of elliptic curves", "authors": [ "Naoto Dainobu" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "For an elliptic curve $E$ over $\\mathbb{Q}$, putting $K=\\mathbb{Q}(E[p])$ which is the $p$-th division field of $E$ for an odd prime $p$, we study the ideal class group $\\mathrm{Cl}_K$ of $K$ as a $\\mathrm{Gal}(K/\\mathbb{Q})$-module. More precisely, for any $j$ with $1\\leqslant j \\leqslant p-2$, we give a condition that $\\mathrm{Cl}_K\\otimes \\mathbb{F}_p$ has the symmetric power $\\mathrm{Sym}^j E[p]$ of $E[p]$ as its quotient $\\mathrm{Gal}(K/\\mathbb{Q})$-module, in terms of Bloch-Kato's Tate-Shafarevich group of $\\mathrm{Sym}^j V_p E$. Here $V_p E$ denotes the rational $p$-adic Tate module of $E$. This is a partial generalization of a result of Prasad and Shekhar for the case $j=1$.", "revisions": [ { "version": "v1", "updated": "2022-04-16T09:12:38.000Z" } ], "analyses": { "subjects": [ "11R29", "11G05", "11R34" ], "keywords": [ "ideal class group", "bloch-katos tate-shafarevich group", "elliptic curve", "symmetric power", "number fields" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }