{ "id": "2204.07618", "version": "v1", "published": "2022-04-15T19:23:10.000Z", "updated": "2022-04-15T19:23:10.000Z", "title": "Operator inequalities via accretive and dissipative transforms", "authors": [ "Mohammad Sababheh", "Ibrahim Halil Gümüş", "Hamid Reza Moradi" ], "categories": [ "math.FA" ], "abstract": "In this article, we employ certain properties of the transform $\\mathscr{C}_{M,m}(A)=(M\\mathbf1_{\\mathcal{H}}-A^*)(A-m\\mathbf1_{\\mathcal{H}})$ to obtain new inequalities for the bounded linear operator $A$ on a complex Hilbert space $\\mathcal{H}$. In particular, we obtain new relations among $|A|,|A^*|,|\\mathfrak{R}A|$ and $|\\mathfrak{I}A|$. Further numerical radius inequalities that extend some known inequalities will be presented too.", "revisions": [ { "version": "v1", "updated": "2022-04-15T19:23:10.000Z" } ], "analyses": { "keywords": [ "operator inequalities", "dissipative transforms", "complex hilbert space", "numerical radius inequalities", "bounded linear operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }