{ "id": "2204.07567", "version": "v1", "published": "2022-04-15T17:40:52.000Z", "updated": "2022-04-15T17:40:52.000Z", "title": "Some remarks on graphs without rainbow triangles", "authors": [ "Ervin Győri", "Zhen He", "Zequn Lv", "Nika Salia", "Casey Tompkins", "Kitti Varga", "Xiutao Zhu" ], "categories": [ "math.CO" ], "abstract": "Given graphs $G_1$, $G_2$ and $G_3$ on a common vertex set of size $n$, a rainbow triangle is a triangle consisting of one edge from each $G_i$. In this note we provide a counterexample to a conjecture of Frankl on the maximum product of the sizes of the edge sets of three graphs avoiding a rainbow triangle. Moreover we propose an alternative conjecture and prove it in the case when every pair is an edge in at least one of the graphs.", "revisions": [ { "version": "v1", "updated": "2022-04-15T17:40:52.000Z" } ], "analyses": { "keywords": [ "rainbow triangle", "common vertex set", "maximum product", "edge sets", "counterexample" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }