{ "id": "2204.06879", "version": "v1", "published": "2022-04-14T11:10:59.000Z", "updated": "2022-04-14T11:10:59.000Z", "title": "On $n$-hereditary algebras and $n$-slice algebras", "authors": [ "Jin Yun Guo", "Yanping Hu" ], "categories": [ "math.RT", "math.RA" ], "abstract": "In this paper we show that $n$-slice algebras are exactly $n$-hereditary algebras whose $(n+1)$-preprojective algebras are $(q+1,n+1)$-Koszul. We also list the equivalent triangulated categories arising from the algebra constructions related to an $n$-slice algebra. We show that higher slice algebras of finite type appear in pair and they share the Auslander-Reiten quiver for their higher preprojective components.", "revisions": [ { "version": "v1", "updated": "2022-04-14T11:10:59.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70", "16S37" ], "keywords": [ "hereditary algebras", "finite type appear", "higher slice algebras", "higher preprojective components", "auslander-reiten quiver" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }