{ "id": "2204.06244", "version": "v1", "published": "2022-04-13T08:30:52.000Z", "updated": "2022-04-13T08:30:52.000Z", "title": "Basisness and completeness of Fucik eigenfunctions for the Neumann Laplacian", "authors": [ "Falko Baustian", "Vladimir Bobkov" ], "comment": "26 pages, 3 figures", "categories": [ "math.CA", "math.AP", "math.SP" ], "abstract": "We investigate the basis properties of sequences of Fucik eigenfunctions of the one-dimensional Neumann Laplacian. We show that any such sequence is complete in $L^2(0,\\pi)$ and a Riesz basis in the subspace of functions with zero mean. Moreover, we provide sufficient assumptions on Fucik eigenvalues which guarantee that the corresponding Fucik eigenfunctions form a Riesz basis in $L^2(0,\\pi)$ and we explicitly describe the corresponding biorthogonal system.", "revisions": [ { "version": "v1", "updated": "2022-04-13T08:30:52.000Z" } ], "analyses": { "subjects": [ "34L10", "34B08", "47A70" ], "keywords": [ "riesz basis", "completeness", "one-dimensional neumann laplacian", "corresponding fucik eigenfunctions form", "zero mean" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }