{ "id": "2204.05592", "version": "v1", "published": "2022-04-12T07:48:46.000Z", "updated": "2022-04-12T07:48:46.000Z", "title": "A Central Limit Theorem for Integer Partitions into Small Powers", "authors": [ "Gabriel F. Lipnik", "Manfred G. Madritsch", "Robert F. Tichy" ], "comment": "13 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "The study of the well-known partition function $p(n)$ counting the number of solutions to $n = a_{1} + \\dots + a_{\\ell}$ with integers $1 \\leq a_{1} \\leq \\dots \\leq a_{\\ell}$ has a long history in combinatorics. In this paper, we study a variant, namely partitions of integers into \\begin{equation*} n=\\lfloor a_1^\\alpha\\rfloor + \\cdots + \\lfloor a_\\ell^\\alpha\\rfloor \\end{equation*} with $1\\leq a_1 < \\cdots < a_\\ell$ and some fixed $0 < \\alpha < 1$. In particular, we prove a central limit theorem for the number of summands in such partitions, using the saddle point method.", "revisions": [ { "version": "v1", "updated": "2022-04-12T07:48:46.000Z" } ], "analyses": { "subjects": [ "11P82", "05A17", "60F05" ], "keywords": [ "central limit theorem", "integer partitions", "small powers", "well-known partition function", "saddle point method" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }