{ "id": "2204.04957", "version": "v1", "published": "2022-04-11T09:09:37.000Z", "updated": "2022-04-11T09:09:37.000Z", "title": "Wellposedness of NLS in Modulation Spaces", "authors": [ "Friedrich Klaus" ], "comment": "28 pages", "categories": [ "math.AP" ], "abstract": "We prove new local and global well-posedness results for the cubic one-dimensional Nonlinear Schr\\\"odinger Equation in Modulation Spaces. Local results are obtained via multilinear interpolation. Global results are proven using conserved quantities from the integrability of the equation, persistence of regularity and by separating off the time evolution of finitely many Picard iterates.", "revisions": [ { "version": "v1", "updated": "2022-04-11T09:09:37.000Z" } ], "analyses": { "subjects": [ "35Q55", "37K10" ], "keywords": [ "modulation spaces", "wellposedness", "global well-posedness results", "cubic one-dimensional nonlinear", "picard iterates" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }