{ "id": "2204.04923", "version": "v1", "published": "2022-04-11T07:52:19.000Z", "updated": "2022-04-11T07:52:19.000Z", "title": "Stability of the ball under volume preserving fractional mean curvature flow", "authors": [ "Annalisa Cesaroni", "Matteo Novaga" ], "categories": [ "math.AP" ], "abstract": "We consider the volume constrained fractional mean curvature flow of a nearly spherical set, and prove long time existence and asymptotic convergence to a ball. The result applies in particular to convex initial data, under the assumption of global existence. Similarly, we show exponential convergence to a constant for the fractional mean curvature flow of a periodic graph.", "revisions": [ { "version": "v1", "updated": "2022-04-11T07:52:19.000Z" } ], "analyses": { "keywords": [ "volume preserving fractional mean curvature", "preserving fractional mean curvature flow", "constrained fractional mean curvature flow" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }