{ "id": "2204.04709", "version": "v1", "published": "2022-04-10T15:42:13.000Z", "updated": "2022-04-10T15:42:13.000Z", "title": "Recurrence relations of coefficients involving hypergeometric function with an application", "authors": [ "Zhen-Hang Yang" ], "comment": "17 pages", "categories": [ "math.CA" ], "abstract": "For $a,b,p\\in \\mathbb{R}$, $-c\\notin \\mathbb{N\\cup }\\left\\{ 0\\right\\} $ and $ \\theta \\in \\left[ -1,1\\right] $, let \\begin{equation*} U_{\\theta }\\left( x\\right) =\\left( 1-\\theta x\\right) ^{p}F\\left( a,b;c;x\\right) =\\sum_{n=0}^{\\infty }u_{n}\\left( \\theta \\right) x^{n}. \\end{equation*}% In this paper, we prove that the coefficients $u_{n}\\left( \\theta \\right) $ for $n\\geq 0$ satisfies a 3-order recurrence relation. In particular, $ u_{n}\\left( 1\\right) $ satisfies a 2-order recurrence relation. These offer a new way to study for hypergeometric function. As an example, we present the necessary and sufficient conditions such that a hypergeometric mean value is Schur m-power convex or concave on $\\mathbb{R}_{+}^{2}$.", "revisions": [ { "version": "v1", "updated": "2022-04-10T15:42:13.000Z" } ], "analyses": { "subjects": [ "33C05", "26B25", "26E60" ], "keywords": [ "recurrence relation", "hypergeometric function", "coefficients", "application", "hypergeometric mean value" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }