{ "id": "2204.04373", "version": "v1", "published": "2022-04-09T03:09:37.000Z", "updated": "2022-04-09T03:09:37.000Z", "title": "Tight toughness, isolated toughness and binding number bounds for the $\\{K_2,C_n\\}$-factors", "authors": [ "Xiaxia Guan", "Tianlong Ma", "Chao Shi" ], "categories": [ "math.CO" ], "abstract": "The $\\{K_2,C_n\\}$-factor of a graph is a spanning subgraph whose each component is either $K_2$ or $C_n$. In this paper, a sufficient condition with regard to tight toughness, isolated toughness and binding number bounds to guarantee the existence of the $\\{K_2,C_{2i+1}| i\\geq 2 \\}$-factor for any graph is obtained, which answers a problem due to Gao and Wang (J. Oper. Res. Soc. China (2021), https://doi.org/10.1007/s40305-021-00357-6).", "revisions": [ { "version": "v1", "updated": "2022-04-09T03:09:37.000Z" } ], "analyses": { "keywords": [ "binding number bounds", "tight toughness", "isolated toughness", "sufficient condition", "spanning subgraph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }