{ "id": "2204.04002", "version": "v1", "published": "2022-04-08T11:22:22.000Z", "updated": "2022-04-08T11:22:22.000Z", "title": "Gradient estimates under integral Ricci bounds", "authors": [ "Ludovico Marini", "Stefano Pigola", "Giona Veronelli" ], "comment": "9 pages, comments are welcome!", "categories": [ "math.AP", "math.DG" ], "abstract": "In this paper we study $W^{1,p}$ global regularity estimates for solutions of $\\Delta u = f$ on Riemannian manifolds. Under integral (lower) bounds on the Ricci tensor we prove the validity of $L^p$-gradient estimates of the form $|| \\nabla u ||_{L^p} \\le C (|| u ||_{L^p} + || \\Delta u||_{L^p})$. We also construct a counterexample which proves that the previously known constant lower bounds on the Ricci curvature are optimal in the pointwise sense. The relation between $L^p$-gradient estimates and different notions of Sobolev spaces is also investigated.", "revisions": [ { "version": "v1", "updated": "2022-04-08T11:22:22.000Z" } ], "analyses": { "subjects": [ "53C21", "35A23", "58J05", "35B45", "46E35" ], "keywords": [ "gradient estimates", "integral ricci bounds", "global regularity estimates", "constant lower bounds", "sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }