{ "id": "2204.03902", "version": "v1", "published": "2022-04-08T08:04:23.000Z", "updated": "2022-04-08T08:04:23.000Z", "title": "Minimal subsystems of given mean dimension in Bernstein spaces", "authors": [ "Jianjie Zhao" ], "comment": "14", "categories": [ "math.DS" ], "abstract": "In this paper, we study the shift on the space of uniformly bounded continuous functions band-limited in a given compact interval with the standard topology of tempered distributions. We give a constructive proof of the existence of minimal subsystems with any given mean dimension strictly less than twice its band-width. A version of real-valued function spaces is considered as well.", "revisions": [ { "version": "v1", "updated": "2022-04-08T08:04:23.000Z" } ], "analyses": { "keywords": [ "mean dimension", "minimal subsystems", "bernstein spaces", "real-valued function spaces", "standard topology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }