{ "id": "2204.03797", "version": "v1", "published": "2022-04-08T01:00:16.000Z", "updated": "2022-04-08T01:00:16.000Z", "title": "On the $KU_G$-local equivariant sphere", "authors": [ "Peter J. Bonventre", "Bertrand J. Guillou", "Nathaniel J. Stapleton" ], "comment": "25 pages. Comments welcome!", "categories": [ "math.AT" ], "abstract": "Equivariant complex $K$-theory and the equivariant sphere spectrum are two of the most fundamental equivariant spectra. For an odd $p$-group, we calculate the zeroth homotopy Green functor of the localization of the equivariant sphere spectrum with respect to equivariant complex $K$-theory.", "revisions": [ { "version": "v1", "updated": "2022-04-08T01:00:16.000Z" } ], "analyses": { "keywords": [ "local equivariant sphere", "equivariant sphere spectrum", "equivariant complex", "zeroth homotopy green functor", "fundamental equivariant spectra" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }