{ "id": "2204.03434", "version": "v1", "published": "2022-04-07T13:28:44.000Z", "updated": "2022-04-07T13:28:44.000Z", "title": "Motivic spectra and universality of $K$-theory", "authors": [ "Toni Annala", "Ryomei Iwasa" ], "comment": "44 pages. Comments welcome!", "categories": [ "math.AG", "math.AT", "math.KT" ], "abstract": "We develop a theory of motivic spectra in a broad generality; in particular $\\mathbb{A}^1$-homotopy invariance is not assumed. As an application, we prove that $K$-theory of schemes is a universal Zariski sheaf of spectra which is equipped with an action of the Picard stack and satisfies projective bundle formula.", "revisions": [ { "version": "v1", "updated": "2022-04-07T13:28:44.000Z" } ], "analyses": { "keywords": [ "motivic spectra", "universality", "satisfies projective bundle formula", "universal zariski sheaf", "homotopy invariance" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }