{ "id": "2204.00428", "version": "v1", "published": "2022-04-01T13:33:06.000Z", "updated": "2022-04-01T13:33:06.000Z", "title": "Generalized Harish-Chandra theory for Dade's Conjecture", "authors": [ "Damiano Rossi" ], "categories": [ "math.RT", "math.GR" ], "abstract": "We prove new results in generalized Harish-Chandra theory providing a description of the so-called Brauer--Lusztig blocks in terms of the information encoded in the $\\ell$-adic cohomology of Deligne--Lusztig varieties. Furthermore, we apply these results to obtain new progress towards the verification of the inductive condition for Dade's Conjecture in the case of groups of Lie type in non-defining characteristic.", "revisions": [ { "version": "v1", "updated": "2022-04-01T13:33:06.000Z" } ], "analyses": { "subjects": [ "20C20", "20C33", "20G40" ], "keywords": [ "generalized harish-chandra theory", "dades conjecture", "lie type", "deligne-lusztig varieties", "brauer-lusztig blocks" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }