{ "id": "2203.16742", "version": "v1", "published": "2022-03-31T01:49:04.000Z", "updated": "2022-03-31T01:49:04.000Z", "title": "On the number of $k$-powers in a finite word", "authors": [ "Shuo Li" ], "categories": [ "math.CO" ], "abstract": "This note is an attempt to attack a conjecture of Fraenkel and Simpson stated in 1998 concerning the number of distinct squares in a finite word. By counting the number of (right-)special factors, we give an upper bound of the number of {\\em $k$-powers} in a finite word for any integer $k\\geq 3$. By {\\em $k$-power}, we mean a word of the form $\\underbrace{uu...u}_{k \\; \\text{times}}$.", "revisions": [ { "version": "v1", "updated": "2022-03-31T01:49:04.000Z" } ], "analyses": { "keywords": [ "finite word", "upper bound", "special factors", "distinct squares", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }