{ "id": "2203.16617", "version": "v1", "published": "2022-03-30T19:02:05.000Z", "updated": "2022-03-30T19:02:05.000Z", "title": "Disjoint hypercyclicity, Sidon sets and weakly mixing operators", "authors": [ "Rodrigo Cardeccia" ], "categories": [ "math.FA" ], "abstract": "We prove that a finite set of natural numbers $J$ satisfies that $J\\cup\\{0\\}$ is not Sidon if and only if for any operator $T$, the disjoint hypercyclicity of $\\{T^j:j\\in J\\}$ implies that $T$ is weakly mixing. As an application we show the existence of a non weakly mixing operator $T$ such that $T\\oplus T^2\\ldots \\oplus T^n$ is hypercyclic for every $n$.", "revisions": [ { "version": "v1", "updated": "2022-03-30T19:02:05.000Z" } ], "analyses": { "keywords": [ "disjoint hypercyclicity", "sidon sets", "natural numbers", "non weakly mixing operator", "finite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }