{ "id": "2203.16514", "version": "v1", "published": "2022-03-30T17:51:08.000Z", "updated": "2022-03-30T17:51:08.000Z", "title": "Exceptional sets for geodesic flows of noncompact manifolds", "authors": [ "Katrin Gelfert", "Felipe Riquelme" ], "comment": "25 pages, 2 figures", "categories": [ "math.DS" ], "abstract": "For a geodesic flow on a negatively curved Riemannian manifold $M$ and some subset $A\\subset T^1M$, we study the limit $A$-exceptional set, that is the set of points whose $\\omega$-limit do not intersect $A$. We show that if the topological $\\ast$-entropy of $A$ is smaller than the topological entropy of the geodesic flow, then the limit $A$-exceptional set has full topological entropy. Some consequences are stated for limit exceptional sets of invariant compact subsets and proper submanifolds.", "revisions": [ { "version": "v1", "updated": "2022-03-30T17:51:08.000Z" } ], "analyses": { "subjects": [ "37B40", "37D40", "37F35", "28D20", "37B10" ], "keywords": [ "geodesic flow", "noncompact manifolds", "limit exceptional sets", "invariant compact subsets", "negatively curved riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }