{ "id": "2203.16232", "version": "v1", "published": "2022-03-30T12:08:53.000Z", "updated": "2022-03-30T12:08:53.000Z", "title": "Massey products in Galois cohomology and the Elementary Type Conjecture", "authors": [ "Claudio Quadrelli" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime. We prove that a positive solution to Efrat's Elementary Type Conjecture implies a positive solution to a strengthened version of Minac-T\\^an's Massey Vanishing Conjecture. Consequently, the maximal pro-$p$ Galois group of a field $K$ containing a root of 1 of order $p$ satisfies the strong $n$-Massey vanishing property in several relevant cases, e.g.: $K$ is a local field; $K$ is a PAC field; $K$ is a $p$-rigid field; $K$ is algebraic extension of a global field with finitely generated maximal pro-$p$ Galois group.", "revisions": [ { "version": "v1", "updated": "2022-03-30T12:08:53.000Z" } ], "analyses": { "subjects": [ "12G05", "20E18", "20J06", "12F10" ], "keywords": [ "galois cohomology", "massey products", "efrats elementary type conjecture implies", "galois group", "positive solution" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }