{ "id": "2203.15997", "version": "v1", "published": "2022-03-30T02:12:00.000Z", "updated": "2022-03-30T02:12:00.000Z", "title": "Quillen-type bundle and geometric prequantization on moduli space of the Seiberg-Witten equations on product of Riemann surfaces", "authors": [ "Rukmini Dey" ], "comment": "6pages", "categories": [ "math-ph", "math.DG", "math.MP", "quant-ph" ], "abstract": "We show the existence of a symplectic structure on the moduli space of the Seiberg-Witten equations on $\\Sigma \\times \\Sigma$ where $\\Sigma$ is a compact oriented Riemann surface. To prequantize the moduli space, we construct a Quillen-type determinant line bundle on it and show its curvature is proportional to the symplectic form.", "revisions": [ { "version": "v1", "updated": "2022-03-30T02:12:00.000Z" } ], "analyses": { "keywords": [ "moduli space", "seiberg-witten equations", "geometric prequantization", "quillen-type bundle", "quillen-type determinant line bundle" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }