{ "id": "2203.15843", "version": "v1", "published": "2022-03-29T18:23:55.000Z", "updated": "2022-03-29T18:23:55.000Z", "title": "Uniqueness for the Nonlocal Liouville Equation in $\\mathbb{R}$", "authors": [ "Maria Ahrend", "Enno Lenzmann" ], "comment": "17 pages. Comments are welcome", "categories": [ "math.AP", "math.DG", "nlin.SI" ], "abstract": "We prove uniqueness of solutions for the nonlocal Liouville equation $$ (-\\Delta)^{1/2} w = K e^w \\quad \\mbox{in $\\mathbb{R}$} $$ with finite total $Q$-curvature $\\int_{\\mathbb{R}} K e^w \\, dx< +\\infty$. Here the prescribed $Q$-curvature function $K=K(|x|) > 0$ is assumed to be a positive, symmetric-decreasing function satisfying suitable regularity and decay bounds. In particular, we obtain uniqueness of solutions in the Gaussian case with $K(x) = \\exp(-x^2)$. Our uniqueness proof exploits a connection of the nonlocal Liouville equation to ground state solitons for Calogero--Moser derivative NLS, which is a completely integrable PDE recently studied by P.~G\\'erard and the second author.", "revisions": [ { "version": "v1", "updated": "2022-03-29T18:23:55.000Z" } ], "analyses": { "keywords": [ "nonlocal liouville equation", "uniqueness proof exploits", "ground state solitons", "decay bounds", "symmetric-decreasing function satisfying suitable regularity" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }