{ "id": "2203.15146", "version": "v1", "published": "2022-03-28T23:42:57.000Z", "updated": "2022-03-28T23:42:57.000Z", "title": "A proof of the $\\frac{n!}{2}$ conjecture for hook shapes", "authors": [ "Sam Armon" ], "comment": "13 pages, 0 figures", "categories": [ "math.CO", "math.RT" ], "abstract": "A well-known representation-theoretic model for the transformed Macdonald polynomial $\\widetilde{H}_\\mu(Z;t,q)$, where $\\mu$ is an integer partition, is given by the Garsia-Haiman module $\\mathcal{H}_\\mu$. We study the $\\frac{n!}{k}$ conjecture of Bergeron and Garsia, which concerns the behavior of certain $k$-tuples of Garsia-Haiman modules under intersection. In the special case that $\\mu$ has hook shape, we use a basis for $\\mathcal{H}_\\mu$ due to Adin, Remmel, and Roichman to resolve the $\\frac{n!}{2}$ conjecture by constructing an explicit basis for the intersection of two Garsia-Haiman modules.", "revisions": [ { "version": "v1", "updated": "2022-03-28T23:42:57.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "05A19" ], "keywords": [ "hook shape", "conjecture", "garsia-haiman module", "well-known representation-theoretic model", "explicit basis" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }