{ "id": "2203.14930", "version": "v1", "published": "2022-03-28T17:33:09.000Z", "updated": "2022-03-28T17:33:09.000Z", "title": "Equal masses Eulerian relative equilibria on a rotating meridian of S^2", "authors": [ "Toshiaki Fujiwara", "Ernesto Pérez-Chavela" ], "comment": "20 pages, 5 figures", "categories": [ "math.CA" ], "abstract": "Relative equilibria on a rotating meridian on $\\mathbb{S}^2$ in equal-mass three-body problem under the cotangent potential are determined. We show the existence of scalene and isosceles relative equilibria. Almost all isosceles triangles, including equilateral, can form a relative equilibrium, except for the two equal arc angles $\\theta = \\pi/2$. For $\\theta\\in (0,2\\pi/3)\\setminus \\{\\pi/2\\}$, the mid mass must be on the rotation axis, in our case, at the north or south pole of $\\mathbb{S}^2$. For $\\theta\\in (2\\pi/3,\\pi)$, the mid mass must be on the equator. For $\\theta=2\\pi/3$, we obtain the equilateral triangle, where the position of the masses is arbitrary. When the largest arc angle $a_\\ell$ is in $a_\\ell\\in (\\pi/2,a_c)$, with $a_c=1.8124...$, two scalene configurations exist for given $a_\\ell$.", "revisions": [ { "version": "v1", "updated": "2022-03-28T17:33:09.000Z" } ], "analyses": { "subjects": [ "70F07", "70F15" ], "keywords": [ "relative equilibrium", "equal masses eulerian relative equilibria", "rotating meridian", "largest arc angle", "equal-mass three-body problem" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }