{ "id": "2203.14787", "version": "v1", "published": "2022-03-28T14:22:08.000Z", "updated": "2022-03-28T14:22:08.000Z", "title": "Multiplicative structures on Moore spectra", "authors": [ "Robert Burklund" ], "comment": "13 pages. Comments welcome!", "categories": [ "math.AT" ], "abstract": "In this article we show that $\\mathbb{S}/8$ is an $\\mathbb{E}_1$-algebra, $\\mathbb{S}/32$ is an $\\mathbb{E}_2$-algebra, $\\mathbb{S}/p^{n+1}$ is an $\\mathbb{E}_n$-algebra at odd primes and, more generally, for every $h$ and $n$ there exist generalized Moore spectra of type $h$ which admit an $\\mathbb{E}_n$-algebra structure.", "revisions": [ { "version": "v1", "updated": "2022-03-28T14:22:08.000Z" } ], "analyses": { "keywords": [ "multiplicative structures", "generalized moore spectra", "algebra structure", "odd primes" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }