{ "id": "2203.14376", "version": "v1", "published": "2022-03-27T19:24:09.000Z", "updated": "2022-03-27T19:24:09.000Z", "title": "A Whittaker category for the Symplectic Lie algebra", "authors": [ "Yang Li", "Jun Zhao", "Yuanyuan Zhang", "Genqiang Liu" ], "categories": [ "math.RT", "math.RA" ], "abstract": "For any $n\\in \\mathbb{Z}_{\\geq 2}$, let $\\mathfrak{m}_n$ be the subalgebra of $\\mathfrak{sp}_{2n}$ spanned by all long negative root vectors $X_{-2\\epsilon_i}$, $i=1,\\dots,n$. An $\\mathfrak{sp}_{2n}$-module $M$ is called a Whittaker module with respect to the Whittaker pair $(\\mathfrak{sp}_{2n},\\mathfrak{m}_n)$ if the action of $\\mathfrak{m}_n$ on $M$ is locally finite, according to a definition of Batra and Mazorchuk. This kind of modules are more general than the classical Whittaker modules defined by Kostant. In this paper, we show that each non-singular block $\\mathcal{WH}_{\\mathbf{a}}^{\\mu}$ with finite dimensional Whittaker vector subspaces is equivalent to a module category $\\mathcal{W}^{\\mathbf{a}}$ of the even Weyl algebra $\\mathcal{D}_n^{ev}$ which is semi-simple. As a corollary, any simple module in the block $\\mathcal{WH}_{\\mathbf{i}}^{-\\frac{1}{2}\\omega_n}$ for the fundamental weight $\\omega_n$ is equivalent to the Nilsson's module $N_{\\mathbf{i}}$ up to an automorphism of $\\mathfrak{sp}_{2n}$. We also characterize all possible algebra homomorphisms from $U(\\mathfrak{sp}_{2n})$ to the Weyl algebra $\\mathcal{D}_n$ under a natural condition.", "revisions": [ { "version": "v1", "updated": "2022-03-27T19:24:09.000Z" } ], "analyses": { "keywords": [ "symplectic lie algebra", "whittaker category", "finite dimensional whittaker vector subspaces", "weyl algebra", "whittaker module" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }