{ "id": "2203.12510", "version": "v1", "published": "2022-03-23T16:12:56.000Z", "updated": "2022-03-23T16:12:56.000Z", "title": "Exact formula and asymptotic behavior for the expected number of inversions in a random permutation avoiding a pattern of length three", "authors": [ "Ross G. Pinsky" ], "categories": [ "math.PR", "math.CO" ], "abstract": "For $\\tau\\in S_3$, let $S_n(\\tau)$ denote the set of permutations in $S_n$ which avoid the pattern $\\tau$, and let $E_n^\\tau$ denote the expectation with respect to the uniformly random probability measure on $S_n(\\tau)$. Let $\\mathcal{I}_n(\\sigma)$ denote the number of inversions in $\\sigma\\in S_n$. We study $E_n^\\tau\\mathcal{I}_n$ for $\\tau\\in\\{231,132,213,312\\}\\subset S_3$. We prove that $$ E_n^{231}\\mathcal{I}_n=E_n^{312}\\mathcal{I}_n=\\frac12\\frac{n!(n+1)!4^n}{(2n)!}-\\frac12(3n+1), $$ and that $$ E_n^{132}\\mathcal{I}_n=E_n^{213}\\mathcal{I}_n=\\frac12(n-1)n-E_n^{231}\\mathcal{I}_n. $$ From the first equation it follows that $$ E_n^{231}\\mathcal{I}_n=E_n^{312}\\mathcal{I}_n\\sim\\frac{\\sqrt\\pi}2n^\\frac32. $$ We also show that the variance $\\text{Var}_{P_n^{\\tau}}(\\mathcal{I}_n)$ of $\\mathcal{I}_n$ under $P_n^\\tau$ satisfies $$ \\text{Var}_{P_n^{\\tau}}(\\mathcal{I}_n)\\sim (\\frac56-\\frac\\pi4)n^3\\approx 0.048n^3,\\ \\text{for}\\ \\tau\\in\\{231,132,213,312\\}. $$", "revisions": [ { "version": "v1", "updated": "2022-03-23T16:12:56.000Z" } ], "analyses": { "subjects": [ "60C05", "05A05" ], "keywords": [ "random permutation avoiding", "exact formula", "asymptotic behavior", "expected number", "inversions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }