{ "id": "2203.11616", "version": "v1", "published": "2022-03-22T11:11:12.000Z", "updated": "2022-03-22T11:11:12.000Z", "title": "Deterministic KPZ equations with nonlocal \"gradient terms\"", "authors": [ "Boumediene Abdellaoui", "Antonio J. Fernández", "Tommaso Leonori", "Abdelbadie Younes" ], "categories": [ "math.AP" ], "abstract": "The main goal of this paper is to prove existence and non-existence results for deterministic Kardar-Parisi-Zhang type equations involving non-local \"gradient terms\". More precisely, let $\\Omega \\subset \\mathbb{R}^N$, $N \\geq 2$, be a bounded domain with boundary $\\partial \\Omega$ of class $C^2$. For $s \\in (0,1)$, we consider problems of the form \\[ \\tag{KPZ} \\left\\{ \\begin{aligned} (-\\Delta)^s u & = \\mu(x) |\\mathbb{D}(u)|^q + \\lambda f(x), \\quad && \\mbox{ in } \\Omega,\\\\ u & = 0, && \\mbox{ in } \\mathbb{R}^N \\setminus \\Omega, \\end{aligned} \\right. \\] where $q > 1$ and $\\lambda > 0$ are real parameters, $f$ belongs to a suitable Lebesgue space, $\\mu$ belongs to $L^{\\infty}(\\Omega)$ and $\\mathbb{D}$ represents a nonlocal \"gradient term\". Depending on the size of $\\lambda > 0$, we derive existence and non-existence results. In particular, we solve several open problems posed in [4, Section 6] and [2, Section 7].", "revisions": [ { "version": "v1", "updated": "2022-03-22T11:11:12.000Z" } ], "analyses": { "keywords": [ "gradient term", "deterministic kpz equations", "non-existence results", "deterministic kardar-parisi-zhang type equations", "main goal" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }