{ "id": "2203.11457", "version": "v1", "published": "2022-03-22T04:44:23.000Z", "updated": "2022-03-22T04:44:23.000Z", "title": "On the Frobenius Coin Problem in Three Variables", "authors": [ "Negin Bagherpour", "Amir Jafari", "Amin Najafi Amin" ], "categories": [ "math.CO", "math.NT" ], "abstract": "The Frobenius coin problem in three variables, for three positive relatively prime integers $a_1< a_2< a_3$ asks to find the largest number not representable as $a_1x_1+a_2x_2+a_3x_3$ with non-negative integer coefficients $x_1$, $x_2$ and $x_3$. In this article, we present a new algorithm to solve this problem that is faster and in our belief simpler than all existing algorithms and runs in $\\mbox{O}(\\log a_1)$ steps.", "revisions": [ { "version": "v1", "updated": "2022-03-22T04:44:23.000Z" } ], "analyses": { "keywords": [ "frobenius coin problem", "belief simpler", "positive relatively prime integers", "non-negative integer coefficients", "largest number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }