{ "id": "2203.11046", "version": "v1", "published": "2022-03-21T15:12:46.000Z", "updated": "2022-03-21T15:12:46.000Z", "title": "$\\mathcal{A}$-caloric approximation and partial regularity for parabolic systems with Orlicz growth", "authors": [ "Mikil Foss", "Teresa Isernia", "Chiara Leone", "Anna Verde" ], "categories": [ "math.AP" ], "abstract": "We prove a new $\\mathcal{A}$-caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type $$ u_{t}- {\\rm div} \\,a(Du)=0. $$ Here the growth of $a$ is bounded by the derivative of an $N$-function $\\varphi$. The primary assumption for $\\varphi$ is that $t\\varphi''(t)$ and $\\varphi'(t)$ are uniformly comparable on $(0,\\infty)$.", "revisions": [ { "version": "v1", "updated": "2022-03-21T15:12:46.000Z" } ], "analyses": { "keywords": [ "parabolic systems", "orlicz growth", "partial regularity result", "primary assumption", "caloric approximation lemma compatible" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }