{ "id": "2203.09272", "version": "v1", "published": "2022-03-17T11:56:09.000Z", "updated": "2022-03-17T11:56:09.000Z", "title": "An inverse problem for the minimal surface equation", "authors": [ "Janne Nurminen" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "We use the method of higher order linearization to study an inverse boundary value problem for the minimal surface equation on a Riemannian manifold $(\\mathbb{R}^{n},g)$, where the metric $g$ is conformally Euclidean. In particular we show that with the knowledge of Dirichlet-to-Neumann map associated to the minimal surface equation, one can determine the Taylor series of the conformal factor $c(x)$ at $x_n=0$.", "revisions": [ { "version": "v1", "updated": "2022-03-17T11:56:09.000Z" } ], "analyses": { "subjects": [ "35R30", "35J25", "35J61" ], "keywords": [ "minimal surface equation", "inverse problem", "inverse boundary value problem", "higher order linearization", "dirichlet-to-neumann map" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }