{ "id": "2203.09261", "version": "v1", "published": "2022-03-17T11:29:27.000Z", "updated": "2022-03-17T11:29:27.000Z", "title": "Flag-transitive, point-imprimitive symmetric $2$-$(v,k,λ)$ designs with $k>λ\\left(λ-3 \\right)/2$", "authors": [ "Alessandro Montinaro" ], "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{D}=\\left(\\mathcal{P},\\mathcal{B} \\right)$ be a symmetric $2$-$(v,k,\\lambda )$ design admitting a flag-transitive, point-imprimitive automorphism group $G$ that leaves invariant a non-trivial partition $\\Sigma$ of $\\mathcal{P}$. Praeger and Zhou \\cite{PZ} have shown that, there is a constant $k_{0}$ such that, for each $B \\in \\mathcal{B}$ and $\\Delta \\in \\Sigma$, the size of $\\left\\vert B \\cap \\Delta \\right \\vert$ is either $0$ or $k_{0}$. In the present paper we show that, if $k>\\lambda \\left(\\lambda-3 \\right)/2$ and $k_{0} \\geq 3$, $\\mathcal{D}$ is isomorphic to one of the known flag-transitive, point-imprimitive symmetric $2$-designs with parameters $(45,12,3)$ or $(96,20,4)$.", "revisions": [ { "version": "v1", "updated": "2022-03-17T11:29:27.000Z" } ], "analyses": { "keywords": [ "point-imprimitive symmetric", "flag-transitive", "non-trivial partition", "point-imprimitive automorphism group", "leaves invariant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }