{ "id": "2203.08188", "version": "v1", "published": "2022-03-15T18:37:42.000Z", "updated": "2022-03-15T18:37:42.000Z", "title": "Category $\\mathcal O$ for vertex algebras of $\\mathfrak{osp}_{1|2n}$", "authors": [ "Thomas Creutzig", "Naoki Genra", "Andrew Linshaw" ], "comment": "18 pages", "categories": [ "math.RT", "hep-th", "math.QA" ], "abstract": "We show that the affine vertex superalgebra $V^k(\\mathfrak{osp}_{1|2n})$ at generic level $k$ embeds in the equivariant $\\mathcal W$-algebra of $\\mathfrak{sp}_{2n}$ times $4n$ free fermions. This has two corollaries: (1) it provides a new proof that for generic $k$, the coset $\\text{Com}(V^k(\\mathfrak{sp}_{2n}), V^k(\\mathfrak{osp}_{1|2n}))$ is isomorphic to $\\mathcal W^\\ell(\\mathfrak{sp}_{2n})$ for $\\ell = -(n+1) + \\frac{k+n+1}{2k+2n+1}$, and (2) we obtain the decomposition of ordinary $V^k(\\mathfrak{osp}_{1|2n})$-modules into $V^k(\\mathfrak{sp}_{2n}) \\otimes \\mathcal W^\\ell(\\mathfrak{sp}_{2n})$-modules. Next, if $k$ is an admissible level and $\\ell$ is a non-degenerate admissible level for $\\mathfrak{sp}_{2n}$, we show that the simple algebra $L_k(\\mathfrak{osp}_{1|2n})$ is an extension of the simple subalgebra $L_k(\\mathfrak{sp}_{2n}) \\otimes {\\mathcal W}_{\\ell}(\\mathfrak{sp}_{2n})$. Using the theory of vertex superalgebra extensions, we prove that the category of ordinary $L_k(\\mathfrak{osp}_{1|2n})$-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects. It is equivalent to a certain subcategory of $\\mathcal W_\\ell(\\mathfrak{sp}_{2n})$-modules. A similar result also holds for the category of Ramond twisted modules. Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary $L_k(\\mathfrak{sp}_{2n})$-modules are rigid.", "revisions": [ { "version": "v1", "updated": "2022-03-15T18:37:42.000Z" } ], "analyses": { "keywords": [ "vertex algebras", "rigid vertex tensor supercategory", "inequivalent simple objects", "admissible level", "affine vertex superalgebra" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }