{ "id": "2203.07863", "version": "v1", "published": "2022-03-15T13:12:03.000Z", "updated": "2022-03-15T13:12:03.000Z", "title": "An asymptotic approximation for the Riemann zeta function revisited", "authors": [ "R B Paris" ], "comment": "8 pages, 0 figures", "categories": [ "math.CA" ], "abstract": "We revisit a representation for the Riemann zeta function $\\zeta(s)$ expressed in terms of normalised incomplete gamma functions given by the author and S. Cang in Methods Appl. Anal. {\\bf 4} (1997) 449--470. Use of the uniform asymptotics of the incomplete gamma function produces an asymptotic-like expansion for $\\zeta(s)$ on the critical line $s=1/2+it$ as $t\\to+\\infty$. The main term involves the original Dirichlet series smoothed by a complementary error function of appropriate argument together with a series of correction terms. It is the aim here to present these correction terms in a more user-friendly format by expressing then in inverse powers of $\\omega$, where $\\omega^2=\\pi s/(2i)$, multiplied by coefficients involving trigonometric functions of argument $\\omega$.", "revisions": [ { "version": "v1", "updated": "2022-03-15T13:12:03.000Z" } ], "analyses": { "subjects": [ "11M06", "33B20", "34E05", "41A60" ], "keywords": [ "riemann zeta function", "asymptotic approximation", "correction terms", "incomplete gamma function produces", "complementary error function" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }