{ "id": "2203.07701", "version": "v1", "published": "2022-03-15T07:36:32.000Z", "updated": "2022-03-15T07:36:32.000Z", "title": "$t$-adic symmetric multiple zeta values for indices in which $1$ and $3$ appear alternately", "authors": [ "Minoru Hirose", "Hideki Murahara", "Shingo Saito" ], "comment": "23 pages", "categories": [ "math.NT" ], "abstract": "We consider the symmetric multiple zeta values in $\\mathcal{S}_m$ without modulo $\\pi^2$ reduction for indices in which $1$ and $3$ appear alternately. We investigate those values that can be expressed as a polynomial of the Riemann zeta values, and give a conjecturally complete list of explicit formulas for such values.", "revisions": [ { "version": "v1", "updated": "2022-03-15T07:36:32.000Z" } ], "analyses": { "subjects": [ "11M32", "05A19" ], "keywords": [ "adic symmetric multiple zeta values", "riemann zeta values", "conjecturally complete list", "explicit formulas", "polynomial" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }