{ "id": "2203.06854", "version": "v1", "published": "2022-03-14T04:51:05.000Z", "updated": "2022-03-14T04:51:05.000Z", "title": "Line bundles on the moduli space of parabolic connections over a compact Riemann surface", "authors": [ "Anoop Singh" ], "comment": "25 pages, accepted for publication in 'Advances in Mathematics'", "categories": [ "math.AG" ], "abstract": "Let $X$ be a compact Riemann surface of genus $g \\geq 3$ and $S$ a finite subset of $X$. Let $\\xi$ be fixed a holomorphic line bundle over $X$ of degree $d$. Let $\\mathcal{M}_{pc}(r, d, \\alpha)$ (respectively, $\\mathcal{M}_{pc}(r, \\alpha, \\xi)$ ) denote the moduli space of parabolic connections of rank $r$, degree $d$ and full flag rational generic weight system $\\alpha$, (respectively, with the fixed determinant $\\xi$) singular over the parabolic points $S \\subset X$. Let $\\mathcal{M}'_{pc}(r, d, \\alpha)$ (respectively, $\\mathcal{M}'_{pc}(r, \\alpha, \\xi)$) be the Zariski dense open subset of $\\mathcal{M}_{pc}(r, d, \\alpha)$ (respectively, $\\mathcal{M}_{pc}(r, \\alpha, \\xi)$ )parametrizing all parabolic connections such that the underlying parabolic bundle is stable. We show that there is a natural compactification of the moduli spaces $\\mathcal{M}'_{pc}(r, d, \\alpha)$, and $\\mathcal{M}'_{pc}(r, \\alpha, \\xi)$ by smooth divisors. We describe the numerically effectiveness of these divisors at infinity. We determine the Picard group of the moduli spaces $\\mathcal{M}_{pc}(r, d, \\alpha)$, and $\\mathcal{M}_{pc}(r, \\alpha, \\xi)$. Let $\\mathcal{C}(L)$ denote the space of holomorphic connections on an ample line bundle $L$ over the moduli space $\\mathcal{M}(r, d, \\alpha)$ of parabolic bundles. We show that $\\mathcal{C}(L)$ does not admit any non-constant algebraic function.", "revisions": [ { "version": "v1", "updated": "2022-03-14T04:51:05.000Z" } ], "analyses": { "subjects": [ "14D20", "14C22", "14H05" ], "keywords": [ "moduli space", "compact riemann surface", "parabolic connections", "line bundle", "full flag rational generic weight" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }