{ "id": "2203.06238", "version": "v1", "published": "2022-03-11T20:44:29.000Z", "updated": "2022-03-11T20:44:29.000Z", "title": "When does the Auslander-Reiten translation operate linearly on the Grothendieck group? -- Part I", "authors": [ "Carlo Klapproth" ], "categories": [ "math.RT" ], "abstract": "For a hereditary, finite dimensional $\\Bbbk$-algebra $A$ the Coxeter transformation is a linear endomorphism $\\Phi_A \\colon \\mathsf{K}_0(\\mathsf{mod} A) \\to \\mathsf{K}_0(\\mathsf{mod} A)$ of the Grothendieck group $\\mathsf{K}_0(\\mathsf{mod} A)$ of $\\mathsf{mod} A$ such that $\\Phi_A[M] = [\\tau_A M]$ for every non-projective indecomposable $A$-module $M$, that is the Auslander-Reiten translation $\\tau_A$ induces a linear endomorphism of $\\mathsf{K}_0(\\mathsf{mod} A)$. It is natural to ask whether there are other algebras $A$ having a linear endomorphism $\\Phi_A \\in \\operatorname{End}_\\mathbb{Z}(\\mathsf{K}_0(\\mathsf{mod} A))$ with $\\Phi_A [M] = [\\tau_A M]$ for all non-projective $M \\in \\mathsf{ind} A$. We will show that this is the case for all Nakayama algebras. Conversely, we will show that if an algebra $A = \\Bbbk Q / I$, where $Q$ is a non-acyclic quiver and $I \\lhd \\Bbbk Q$ is an admissible ideal, admits such a linear endomorphism then $A$ is already a cyclic Nakayama algebra.", "revisions": [ { "version": "v1", "updated": "2022-03-11T20:44:29.000Z" } ], "analyses": { "subjects": [ "16G70", "16E20" ], "keywords": [ "auslander-reiten translation operate", "grothendieck group", "linear endomorphism", "cyclic nakayama algebra", "coxeter transformation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }