{ "id": "2203.04590", "version": "v1", "published": "2022-03-09T09:13:20.000Z", "updated": "2022-03-09T09:13:20.000Z", "title": "Two conjectures for Macdonald polynomials: The stretching symmetry and Haglund's conjecture", "authors": [ "Seung Jin Lee", "Jaeseong Oh", "Brendon Rhoades" ], "comment": "13 pages, comments welcome!", "categories": [ "math.CO" ], "abstract": "We propose a conjecture which is a symmetry relation for the modified Macdonald polynomials of stretched partitions. We prove the conjecture for one-column or one-row shape in two ways: using the LLT expansion of the modified Macdonald polynomials and using the Garsia--Haiman module. In addition, we prove a conjecture of Haglund concerning multi-$t$-Macdonald polynomials of two rows.", "revisions": [ { "version": "v1", "updated": "2022-03-09T09:13:20.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10" ], "keywords": [ "haglunds conjecture", "stretching symmetry", "modified macdonald polynomials", "one-row shape", "llt expansion" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }