{ "id": "2203.03239", "version": "v1", "published": "2022-03-07T09:53:18.000Z", "updated": "2022-03-07T09:53:18.000Z", "title": "Twisted Iwasawa invariants of knots", "authors": [ "Ryoto Tange", "Jun Ueki" ], "comment": "17 pages, 1 figure", "categories": [ "math.GT", "math.NT" ], "abstract": "Let $p$ be a prime number and $m$ an integer coprime to $p$. In the spirit of arithmetic topology, we introduce the notions of the twisted Iwasawa invariants $\\lambda, \\mu, \\nu$ of ${\\rm GL}_N$-representations and $\\mathbb{Z}/m\\mathbb{Z}\\times \\mathbb{Z}_p$-covers of knots. We prove among other things that the set of Iwasawa invariants determine the genus and the fiberedness of a knot, yielding their profinite rigidity. Several intuitive examples are attached. We further prove the $\\mu=0$ theorem for ${\\rm SL}_2$-representations of twist knot groups and give some remarks.", "revisions": [ { "version": "v1", "updated": "2022-03-07T09:53:18.000Z" } ], "analyses": { "subjects": [ "57K10", "11R23", "57M10", "11S99" ], "keywords": [ "twisted iwasawa invariants", "iwasawa invariants determine", "twist knot groups", "representations", "prime number" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }