{ "id": "2203.02867", "version": "v1", "published": "2022-03-06T03:02:24.000Z", "updated": "2022-03-06T03:02:24.000Z", "title": "Diffusion Maps : Using the Semigroup Property for Parameter Tuning", "authors": [ "Shan Shan", "Ingrid Daubechies" ], "comment": "14 pages, 12 figures", "categories": [ "stat.ML", "cs.LG", "cs.NA", "math.NA" ], "abstract": "Diffusion maps (DM) constitute a classic dimension reduction technique, for data lying on or close to a (relatively) low-dimensional manifold embedded in a much larger dimensional space. The DM procedure consists in constructing a spectral parametrization for the manifold from simulated random walks or diffusion paths on the data set. However, DM is hard to tune in practice. In particular, the task to set a diffusion time t when constructing the diffusion kernel matrix is critical. We address this problem by using the semigroup property of the diffusion operator. We propose a semigroup criterion for picking t. Experiments show that this principled approach is effective and robust.", "revisions": [ { "version": "v1", "updated": "2022-03-06T03:02:24.000Z" } ], "analyses": { "keywords": [ "diffusion maps", "semigroup property", "parameter tuning", "classic dimension reduction technique", "diffusion kernel matrix" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }