{ "id": "2203.01861", "version": "v1", "published": "2022-03-03T17:16:13.000Z", "updated": "2022-03-03T17:16:13.000Z", "title": "Rank-uniform local law for Wigner matrices", "authors": [ "Giorgio Cipolloni", "László Erdős", "Dominik Schröder" ], "comment": "33 pages", "categories": [ "math.PR" ], "abstract": "We prove a general local law for Wigner matrices which optimally handles observables of arbitrary rank and thus it unifies the well-known averaged and isotropic local laws. As an application, we prove that the quadratic forms of a general deterministic matrix $A$ on the bulk eigenvectors of a Wigner matrix has approximately Gaussian fluctuation. For the bulk spectrum, we thus generalize our previous result \\cite{2103.06730} valid for test matrices $A$ of large rank as well as the result of Benigni and Lopatto \\cite{2103.12013} valid for specific small rank observables.", "revisions": [ { "version": "v1", "updated": "2022-03-03T17:16:13.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52" ], "keywords": [ "wigner matrix", "rank-uniform local law", "specific small rank observables", "isotropic local laws", "general deterministic matrix" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }