{ "id": "2203.00731", "version": "v1", "published": "2022-03-01T20:36:42.000Z", "updated": "2022-03-01T20:36:42.000Z", "title": "A lower bound on the proportion of modular elliptic curves over Galois CM fields", "authors": [ "Zachary Feng" ], "categories": [ "math.NT" ], "abstract": "We calculate an explicit lower bound on the proportion of elliptic curves that are modular over any Galois CM field not containing $\\zeta_5$. Applied to imaginary quadratic fields, this proportion is at least $2/5$. Applied to cyclotomic fields $\\mathbb{Q}(\\zeta_n)$ with $5\\nmid n$, this proportion is at least $1-\\varepsilon$ with only finitely many exceptions of $n$, for any choice of $\\varepsilon > 0$.", "revisions": [ { "version": "v1", "updated": "2022-03-01T20:36:42.000Z" } ], "analyses": { "keywords": [ "galois cm field", "modular elliptic curves", "proportion", "explicit lower bound", "imaginary quadratic fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }