{ "id": "2202.14008", "version": "v1", "published": "2022-02-28T18:25:57.000Z", "updated": "2022-02-28T18:25:57.000Z", "title": "The Aronsson Equation for Absolute Minimizers of Supremal Functionals in Carnot-Carathéodory Spaces", "authors": [ "Andrea Pinamonti", "Simone Verzellesi", "Changyou Wang" ], "categories": [ "math.AP" ], "abstract": "Given a $C^2$ family of vector fields $X_1,...,X_m$ which induces a continuous Carnot-Carath\\'eodory distance, we show that any absolute minimizer of a supremal functional defined by a $C^2$ quasiconvex Hamiltonian $f(x, z, p)$, allowing $z$-variable dependence, is a viscosity solution to the Aronsson equation $-\\langle X(f(x, u(x), Xu(x))), D_p f(x, u(x), Xu(x))\\rangle = 0.$", "revisions": [ { "version": "v1", "updated": "2022-02-28T18:25:57.000Z" } ], "analyses": { "keywords": [ "supremal functional", "aronsson equation", "absolute minimizer", "carnot-carathéodory spaces", "vector fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }