{ "id": "2202.13737", "version": "v1", "published": "2022-02-28T13:06:15.000Z", "updated": "2022-02-28T13:06:15.000Z", "title": "The Engel graph of a finite group", "authors": [ "Eloisa Detomi", "Andrea Lucchini", "Daniele Nemmi" ], "categories": [ "math.GR" ], "abstract": "For a finite group $G,$ we investigate the direct graph $\\Gamma(G),$ whose vertices are the non-hypercentral elements of $G$ and where there is an edge $x\\mapsto y$ if and only if $[x,_ny]=1$ for some $n \\in \\mathbb N.$ We prove that $\\Gamma(G)$ is always weakly connected and is strongly connected if $G/Z_{\\infty}(G)$ is neither Frobenius nor almost simple.", "revisions": [ { "version": "v1", "updated": "2022-02-28T13:06:15.000Z" } ], "analyses": { "keywords": [ "finite group", "engel graph", "non-hypercentral elements" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }